Facilities Management | Thermal Imaging Electrical Inspection

Non-destructive thermal imaging surveys for routine maintenance and fault-finding.

Electrical Thermal Imaging Surveys for Facilities Management | Prices starting from £495 ex.VAT

Non-contact electrical thermal imaging inspections for fixed-wire testing, fault-finding and facilities management.

Thermal imaging is a non-invasive technique for detecting electrical faults and issues. These include poor connections, uneven loading and phase imbalances. In detecting these issues early, facilities managers can avoid costly-downtime and expensive repairs.

As part of routine maintenance, thermal inspections are used to assess system performance. This is useful when commissioning new switchgear and satisfying insurance requirements. All inspections include a repeatable point inspection, analysis and comparison. We can also include data logging, asset registration and ultrasonic inspections.

  • Find Loose Connections

  • Locate Phase Imbalances

  • Identify Uneven Loading

  • Live fixed-wire testing

  • Satisfy Insurance Requirements

Why use thermal imaging?

Thermal Condition Monitoring

Poor Connections

Thermal imaging allows for the early detection of faults and poor connections.

IRT Electrical Inspection

Uneven Loading

Accurately detect uneven loading, helping to prevent a phase imbalance.

Electromechanical Inspections

Phase Balance

Thermal imaging cameras allow for the quick detection of phase imbalances within systems.

Thermal Imaging for Electrical Inspections

Faulty Equipment

Use thermal imaging to easily detect component failure or cable damage.

Infrared Facilities Management

System Performance

Establish baseline and trending performance assessments using repeatable point inspection.

Thermal Inspections for Facilities Management

Facilities Management

Our surveys collect accurate, real-time data whilst avoiding costly down-time.

Learn More

Thermal imaging as a non-invasive inspection tool has been introduced into the latest IEE Wiring Regulations guidebook.

The updated regulations highlight the effectiveness of electrical thermal imaging inspections, expressing how it can be used to identify defects that can not be located with just a visual inspection. This is one of the reasons why thermal imaging inspections are ideal for facilities management.

The regulations also recognise that the isolation of an electrical supply, especially in public buildings and offices, can often be difficult. The regulations go on to say that some regulations simply cannot be discovered by a visual inspection alone. For example, incorrectly tightened connections can cause a high resistance joint which can ultimately cause a high temperature to occur locally to the connection. If left uncovered, further deterioration of the connection may occur, resulting in a continuing increase in temperature that can present a high risk of a fire.

Fortunately, thermal imaging cameras can be used to identify these hot spots, loose connections and even-load balancing.

There are two recognised IRT image evaluation techniques, these are, qualitative and quantitative evaluation. Qualitative evaluation places emphasis upon the varying levels of radiosity that create signatures or patterns that are characteristics of recognisable defects. Quantitative evaluation requires the use of numerical data such as temperature values, radiometric values and environmental values that assist the analysis process.

Quantitative evaluation is not an alternative to qualitative evaluation, but rather an enhancement to qualitative evaluation. In most cases, qualitative techniques are used in the first instance to detect anomalies and determine the nature of potential defects. Quantitative evaluation is then used to assess the severity of the fault by evaluating; temperature differentials, radiometric values and environmental information. Thermography software is also available to support image analysis, radiometric data processing and report generation.

In short, qualitative evaluation provides the diagnostic element of the analytical process (i.e. what’s wrong) and the quantitative element provides the prognostic information (i.e. how bad). Our engineers understand the importance of both quantitative and qualitative analysis, and will use both when assessing any electrical systems or installations.

The wide use of computers and solid state electronic devices in the workplace has resulted in an increase in the presence of destructive harmonics that pervade electrical distribution systems. And whilst efforts have been made to reduce the problem, they are still ever present.

Harmonics are usually attributed to non-linear loads connected to electrical distribution systems and where present are likely to cause problems such as:

  • Circuit breaker tripping (circuit downtime)
  • Blown fuses (circuit downtime)
  • Overheating motors (reduced motor life)
  • Overheating transformer windings (reduced transformer life)
  • Overheating neutral conductors (fire risk)

Infrared thermography cannot detect harmonics, however, it can detect the secondary effects of harmonics, as significant harmonic activity will result in electrical distribution equipment operating at elevated temperatures.

In recent years international standards have moved to limit the use of equipment that cause high harmonic interference, the primary standards being BS EN 61000-3-2 and the IEC 61000 series. Nevertheless, harmonics still remain a problem today due to the significant legacy of older electronic equipment still in use.

Electrical thermal imaging surveys are a highly effective way to undertake preventative maintenance for facilities management and identify defects between electrical inspection and testing. Infrared cameras, when in the hands of a trained thermographer, can yield extremely useful and reliable thermal data. When in the hands of an untrained thermographer however, mistakes can often be made.

Incorrect readings and results are often due to one of the following:

Missing Objects

Thermal imaging cameras cannot see through things – they are not x-ray cameras. Infrared cameras will only detect radiated heat from an object that’s being observed. Without a direct line of sight, faults can often be missed.

Misreading Reflections

Reflections are common in everyday life – the most common example being a mirror. When considering infrared radiation, polished and shiny surfaces (such as metals) will often reflect more. In terms of thermal imaging, this means that when standing in front of a metal surface, chances are that hotspots seen with an infrared camera are a reflection of heat from your own body. This misreading can often be confused as a fault, and can lead to costly and unneccesary rennovations.

Not Surveying Under Load

Without load an electrical system will not generate any heat. Without heat, no faults will be visible to a thermal imaging camera. Whilst this may seem obvious, it’s an extremely common mistake when carrying out electrical thermal imaging surveys.

Incorrect Settings

Unfortunately, thermal imaging cameras are not point-and-shoot. So many factors affect the output including the nature of the subject, the ambient surroundings, the range of temperatures detected and even the choice of colour palette. Emissivity, for example, is the capacity of an object to emit infrared radiation. There are several factors that can affect emissivity, so understanding its importance and how it works will ensure you don’t yield incorrect results.

WE’RE ACCREDITED BY

We operate with £5m Public Liability and £2m Professional Indemnity insurance.

We help customers find faults and maximise profits.

Our specialist sensors detect problems outside of the visual spectrum.

Learn More